If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15t^2-4t-1=0
a = 15; b = -4; c = -1;
Δ = b2-4ac
Δ = -42-4·15·(-1)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{19}}{2*15}=\frac{4-2\sqrt{19}}{30} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{19}}{2*15}=\frac{4+2\sqrt{19}}{30} $
| 3z^2+14z+24=0 | | -1x+6=-20+1 | | -3x(2x-3)+x+4=-27 | | -3(-4x-3)+5x-5=0 | | 10p-2p-1p=5p | | 3^x=2000000 | | 2/5*x=36 | | x6=72+18 | | 14x-3=8x+10 | | 6w-2=10 | | 2x(−8+5)=106 | | −6y+3y=18 | | (x)=3(x+4) | | (0.08x)+x=28500 | | 0.25/x=6/12 | | 2d-7+5d=0 | | 9x+3=3x-3 | | 9-c=−13 | | a3-2=15 | | 2d-7+5d=0 | | p/2+0.1=0 | | -2x^2-6=x | | /3t+4=-4 | | 3x5+1=4 | | -4h-3=4 | | x^2+x=24.75 | | 2(x+3)=x—6 | | 12-6r=3(5+r) | | 16-m=11 | | 9+9+3=2110+10+10=3015+15-15=159+9x36=333 | | -3(x–4)=5x+4 | | C(x)=3x^2-1200+133500 |